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Disclaimers


Since it is an itch of mine, will mostly talk about how we might use alignments to make data 
more useful.
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Hopefully, the current (small) momentum behind data might give some energy to the 
alignments project.
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1. Overview
CubicVT:=[ [] : i in [1..1280]];

CubicVT[4,1] := Graph<4 | {{1,3}, {1,4}, {2,4}, {2,3}, {1,2}, {3,4}}>;

CubicVT[6,1] := Graph<6 | {{2,5}, {1,3}, {2,6}, {1,4}, {3,5}, {4,6}, {2,3}, 
{1,6}, {4,5}}>;

CubicVT[6,2] := Graph<6 | {{1,3}, {1,5}, {2,6}, {5,6}, {4,5}, {2,4}, {1,2}, 
{3,4}, {3,6}}>;

CubicVT[8,1] := Graph<8 | {{2,8}, {1,5}, {1,7}, {7,8}, {4,8}, {5,6}, {6,7}, 
{4,5}, {1,2}, {2,3}, {3,4}, {3,6}}>;

CubicVT[8,2] := Graph<8 | {{1,8}, {2,6}, {6,8}, {4,7}, {1,4}, {4,5}, {5,8}, 
{1,2}, {2,7}, {3,7}, {3,5}, {3,6}}>;

CubicVT[10,1] := Graph<10 | {{4,6}, {3,5}, {2,6}, {4,8}, {5,6}, {3,4}, {1,5}, 
{1,10}, {2,10}, {7,9}, {3,7}, {9,10}, {1,7}, {2,8}, {8,9}}>;

CubicVT[10,2] := Graph<10 | {{4,6}, {3,5}, {3,6}, {4,5}, {8,10}, {1,3}, {6,8}, 
{1,9}, {5,7}, {7,10}, {9,10}, {2,4}, {1,7}, {2,8}, {2,9}}>;

CubicVT[10,3] := Graph<10 | {{2,6}, {6,7}, {4,8}, {3,9}, {1,3}, {4,10}, {6,8}, 
{5,9}, {1,4}, {1,2}, {2,5}, {7,10}, {3,7}, {8,9}, {5,10}}>;

CubicVT[12,1] := Graph<12 | {{12,10}, {11,7}, {3,9}, {3,7}, {11,9}, {2,4}, 
{6,10}, {1,9}, {12,5}, {1,5}, {11,6}, {7,8}, {6,8}, {3,5}, {4,10}, {12,2}, 
{4,8}, {1,2}}>;

CubicVT[12,2] := Graph<12 | {{4,6}, {3,5}, {2,6}, {11,6}, {8,10}, {12,8}, {1,3},
{5,9}, {4,9}, {1,8}, {5,7}, {11,3}, {12,2}, {12,10}, {7,10}, {7,9}, {11,1}, 
{2,4}}>;

CubicVT[12,3] := Graph<12 | {{4,6}, {5,8}, {6,7}, {12,6}, {3,4}, {11,12}, 
{4,10}, {5,9}, {1,9}, {1,2}, {2,5}, {7,10}, {12,3}, {9,10}, {3,8}, {1,7}, 
{11,2}, {11,8}}>;

CubicVT[12,4] := Graph<12 | {{4,6}, {2,3}, {2,6}, {4,5}, {3,9}, {11,7}, {8,10}, 
{11,9}, {1,4}, {6,8}, {1,9}, {2,5}, {5,7}, {12,10}, {7,10}, {12,3}, {1,12}, 
{11,8}}>;

CubicVT[14,1] := Graph<14 | {{1,5}, {13,10}, {11,5}, {12,9}, {8,9}, {3,10}, 
{12,6}, {13,4}, {11,2}, {8,10}, {7,9}, {1,6}, {11,4}, {3,14}, {1,14}, {5,8}, 
{4,7}, {2,3}, {14,7}, {12,2}, {13,6}}>;

CubicVT[14,2] := Graph<14 | {{5,8}, {2,3}, {1,14}, {3,14}, {3,6}, {12,6}, 
{8,10}, {13,5}, {1,9}, {13,10}, {4,7}, {12,4}, {1,6}, {7,10}, {13,4}, {7,9}, 
{11,5}, {12,9}, {11,14}, {11,2}, {2,8}}>;

CubicVT[14,3] := Graph<14 | {{5,8}, {14,6}, {3,14}, {12,7}, {2,14}, {1,3}, 
{4,10}, {13,10}, {2,5}, {4,9}, {4,7}, {13,8}, {11,3}, {1,6}, {6,9}, {12,9}, 
{1,12}, {13,7}, {11,2}, {5,10}, {11,8}}>;
{16,10}, {1,14}, {5,7}, {1,18}, {11,6}, {4,16}, {2,9}, {11,9}, {17,10}, {9,10}, 
{7,8}, {13,3}}>;

A long time ago, when I was a young and naive undergraduate student, I built a database of 
tournaments for the Slovenian Go Association. Soon after that I started my PhD and one of 
the first things I encountered was my advisor’s dataset of cubic vertex-transitive graphs. To 
me, it seemed rather urgent that something like that belonged in a database, not just as a 
plain text file.


- To start, we’ll spend some time on a safari of mathematical data.

- We will look at a use case for alignments: annotating data, making it more useful.

- We will (perhaps cheekily) stretch the notion of alignments to objects.

- Finally, we will consider an example of incorporating data with formalization.


If we’re counting generously, this slide could be the “fifth part,” making this talk a trilogy in five 
parts. Don’t panic; there won’t be a sixth.



Thank you for being patient with me

Scan the QR code on the right 
or go to menti.com and enter 
the code 3882 2786  
 
When answering, consider 
• who produces the data, 
• who are the users, 
• what is the content.

Warming up with a poll



Remembering that the universe is big

• "Research data are all digital 
and analog objects 
generated or handled in the 
process of doing research" 
(MaRDI) 

• Right: the listing on the 
Cornell Mathematics Library 
page on "Math Databases".

2. A data safari

• MathSciNet 
• Zentralblatt fur Mathematik 
• Google Scholar 
• Wikipedia 
• MacTutor History of Mathematics 
• Scopus 
• The Web of Science 
• Mathworld 
• Jahrbuch-Project Electronic Research Archive for 

Mathematics (mathematics literature 1868 - 1943) 
• arXiv 
• ERIC (index in the field of Education, including 

Education in Mathematics) 
• Wolfram|Alpha ("allows you to enter a query and 

returns an answer from structured data")

"All digital and analog objects" includes: paper publications, proofs, computational results 
(and more). Does this mean that all mathematicians should have a research data management 
plan when they start writing a paper? Probably not, but perhaps they should.

http://scholar.google.com/
http://en.wikipedia.org/wiki/Mathematics
https://catalog.library.cornell.edu/catalog/9897789
http://resolver.library.cornell.edu/misc/4283377
http://mathworld.wolfram.com/
http://www.emis.de/MATH/JFM/JFM.html
http://www.emis.de/MATH/JFM/JFM.html


Modern mathematical databases
Four well-established examples, just in case

I mostly think about data that broadly looks like the databases above (possibly with less 
infrastructure): collections of (counter)examples


Some in audience have probably seen OEIS, LMFDB. Most datasets are not so complex (in 
the infrastructure sense).



Data probably goes as far back as math

• Earliest datable table 
containing mathematical 
computations: length 
measurements, 
corresponding areas 
(Sumer, c. 2600 BCE). 

• picture 
A list of Pythagorean triples 
(Babylon, c. 1800 BCE).

Cuneiform and the Greeks

Plimpton 322 clay tablet; Bill Casselman

Eleanor Robson, "Tables and tabular formatting in Sumer, Babylonia, and Assyria, 2500 
BCE-50," Campbell-Kelly et al [eds]. The History of Mathematical Tables from Sumer to 
Spreadsheets [2003]

 



Data probably goes as far back as math

• Earliest datable table 
containing mathematical 
computations: length 
measurements, 
corresponding areas 
(Sumer, c. 2600 BCE). 

• picture 
The list of the Platonic solids 
(a.k.a. convex regular 
polyhedra; Theaetetus of 
Athens, c. 417 - c. 369 BCE).

Cuneiform and the Greeks

Platonic solids; Wikipedia user Drummyfish

Platonic solids: constructed by regular polygons as faces, with the same number of them at 
each vertex, convex.

 

https://commons.wikimedia.org/wiki/User:Drummyfish


Persistence: data outlasting the 
computation before computers

• picture 
Tables of trigonometric, 
logarithmic, and exponential 
functions (Napier's Mirifici 
logarithmorum, trig and log 
trig data for 34 degrees) 

• Math Tables Project: human 
computers constructed 
tables of mathematical 
functions (1938 - 1946; for 
hand computation).

Results of computations

John Napier, 1614



Begun in 1930, published in 1988 as a book.

 
Cubic symmetric graphs with 
up to 512 vertices. 

There are 207 such graphs. 
Foster only missed a handful.

The Foster Census

Wolfram Mathworld

Symmetric graph: every ordered pair of adjacent vertices (an arc) can be mapped to any other 
such pair. 



Is surprisingly hard

1. Provide a searchable index 
of existing mathematical 
databases. 

2. Support mathematicians in 
creating new mathematical 
databases and improving 
existing ones.

Indexing mathematical data

MathBases began as an effort to map what is out there as well as to index and showcase 
mathematical databases. There is a bias towards number theory and combinatorics, which 
reflects the editors' familiarity with these areas.


MathBases has gained surprising visibility, we could promote use of standardized vocabulary.



Four easy dimensions

The diversity of math databases

small - large
Atlas of Small Chiral Polytopes (56) Lists of finite lattices (17 · 109)

enumerations and classifications - curated/collected
The Foster census OEIS, House of Graphs

stored - generated on demand
House of Graphs - The Small Groups Library in GAP - nauty

easy to obtain values - single value hard to obtain
nauty Parameters of Strongly Regular Graphs

Despite the restriction we have imposed, there is great diversity.



Another dimension - purpose?

• Curating (counter)examples 

• Index (fingerprint) theorems 
via simpler objects 

• Knowledge reference 

• Concept instantiation 

• Benchmarking

The diversity of math databases

• Curation of examples: topological spaces, properties and theorems in π-base, graphs and 
invariants in the House of Graphs.


• Index theorems: integer sequences (OEIS), Parameters of Strongly Regular Graphs.

• Knowledge reference: definitions and properties of special functions in DLMF

• Instantiation: datasets in algebraic geometry (only one object, variety)

• Benchmarking: SuitSparse matrix dataset




Large databases usually define relevant concepts

Concepts in databases

The larger databases are pretty good at defining their concepts.



Large databases usually define relevant concepts

Concepts in databases



Large databases usually define relevant concepts

Concepts in databases



We are still looking for the long tail

• An analysis of zbMATH 
references revealed a long 
tail of data 
(Hulek, Müller, Schubotz and Teschke; 
Mathematical Research Data) 

• Call to action 
What are relevant metadata 
for collections of examples?

Where is the (rest of the) data?

dataset visibility
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MathBases

Nobody knows what's hiding in 
the dark, long tail

There are currently 128 entries in MathBases, a few more waiting to be entered. Is this all?

 

What you see on MathBases is probably just the tip of the iceberg (even if we're trying to 
make this not the case).



Questions?



Making data more useful 
requires aligning the data with 
the right concepts 

• FAIR: Findable, Accessible, 
Interoperable and Reusable. 
Not the same as open data 
(free use, accessibility, submission) 

• RDMP: Research Data 
Management plan 

Data provide a use case; buzzwords

3. Aligning concepts

blue arrow (ON) (OFF) red arrow

main handle

I want to illustrate my frustration with some of the data in mathematics. 


Let us consider the specimen of industrial design pictured on the right.


There are red arrows on the right and blue arrows on the left. The main handle turns counter-
clockwise and seemed to correlate somewhat with water output. The smaller handle appeared 
to have little effect. I messed around with it for a while and could not get the water to be 
warmer than lukewarm.


As a last resort, I turned the handle all the way into the worryingly blue zone, which 
unexpectedly but fortunately resulted in hot water.



Making data more useful 
requires aligning the data with 
the right concepts 

• FAIR: Findable, Accessible, 
Interoperable and Reusable. 
Not the same as open data 
(free use, accessibility, submission) 

• RDMP: Research Data 
Management plan 

Data provide a use case; buzzwords

3. Aligning concepts List of the 17 representatives of 
IC(6,3), ordered by the RevLex-Index.
The numbers above the signs indicate 
the elements of the corresponding basis.

             11121121231121231234
             22332334442334445555
             34445555556666666666
IC(6,3, 1) = +++++++++++++-++--++
IC(6,3, 2) = ++++++++++++++++++--
IC(6,3, 3) = +++++++++++++++++++-
IC(6,3, 4) = ++++++++++++++++++++
IC(6,3, 5) = 0++++++++++++++-+---
IC(6,3, 6) = 0+++++++++++++++++--
IC(6,3, 7) = 0+++++++++++++++++++
IC(6,3, 8) = 0++++++++++++++++++0
IC(6,3, 9) = 0++++++0+++++++++---
IC(6,3,10) = 0++++++0++++++++++--
IC(6,3,11) = 0++++++0+++++++++++-
IC(6,3,12) = 0++++++0+++++++0++--
IC(6,3,13) = 0++++++0+++++++0+0--
IC(6,3,14) = 0++++++0++++++0-+---
IC(6,3,15) = 0000++++++++++++++++
IC(6,3,16) = 0000++++++++++++0+++
IC(6,3,17) = 0000000000++++++++++

The first time I saw the data on the right side of the slide, I had no idea what I was looking at. 
As with the tap, it is possible to figure it out (I presume), given enough time.


The FAIR guiding principles were published in 2016 and are an attempt to describe, in very 
general terms, how usable data look like. Importantly some of what they recommend is related 
to alignments.


Open in "open access" refers to the removal of financial, legal and technical barriers to data, 
while accessibility in FAIR refers to the data being retrievable by humans and machines.


The RDMP is another buzzword that appears in relation to research data. We won't spend too 
much time on it, but I thought it would be helpful to at least mention it.



Mostly about metadata; deep FAIR proposed term for corresponding properties for objects

The FAIR guidelines

Findable 
globally unique, persistent IDs, 
rich metadata, indexing 
easy to identify and find for both humans 
and computers, e.g. with metadata that 
facilitate searching for specific datasets 

Accessible 
long term storage, well-
defined access conditions, 
(metadata or data level)

Interoperable 
FAIR knowledge 
representation language 
ready to be combined with other datasets 
by humans or computers, without 
ambiguities in terms and values. 

Reusable: clear usage 
license, provenance, domain-
relevant standards, 
comprehensive, relevant 
attributes 
ready to be used for future research and to 
be further processed using computational 
methods.

The FAIR guidelines are intentionally broad and somewhat vague; designed to provide 
communities with a flexible framework to be further developed and adapted. They focus 
primarily on metadata — covering aspects such as authorship, provenance, licensing, and 
descriptions of the dataset’s contents.


Adopting FAIR principles can significantly improve the citability, visibility, and confirmability of 
datasets, making computational results more easily reproducible.


In particular, the principles stress the importance of accurately and understandably describing 
the data so that it is findable, interoperable, and reusable.


A brief note on interoperability: to the best of my knowledge, there is currently no standard 
knowledge representation language for mathematical data. While this means we don’t yet 
have to worry about strict interoperability requirements, it is an area where the community 
should invest effort in the future. 



Research Data Management Plan

• A living document, from the 
start of a project. 

• Outlines how data will be 
managed throughout a 
research project. 

• Incorporates the FAIR 
principles to ensure that 
data is handled in a way 
that maximizes its long-term 
value and usability.

An aside: the RDMP

Data Management Plan 
 
No data management plan is necessary, since the research outlined 
in this proposal is in the realm of Mathematics and by nature 
theoretical. The PI will make his research freely and publicly 
accessible through articles, graphics and programs on the web 
page <INSERT WEBSITE>.  The PI will also submit articles and 
papers to appropriate peer-reviewed journals for publication. 
 Finally this work will be disseminated through academic research 
seminars and conferences. 

www.math.harvard.edu/media/DataManagement.pdf 
(link curtesy of Boege et al)

The other buzzword you might encounter is the RDMP, a document outlining the plan for 
managing the data. It can incorporate the FAIR principles and can be required by funding 
agencies and/or institutions.


I'm primarily bringing it up because of the example on the right, which echoes a claim I’ve 
often heard in and about the field of mathematics. It is that mathematicians rarely produce 
data, and that the data they do produce requires little to no management. I’ve also frequently 
come across statements like “you can’t license mathematical objects” and the belief that if 
data is posted on someone’s website, it is automatically in the public domain and freely 
usable.


This attitude is an obstacle (of a social nature) that stands in the way of better data in math.



At this point in time and for people compiling datasets containing examples

Take-aways for data management

• More and better metadata 
and documentation 
waiting for a metadata standard 

• The meaning and 
provenance of 
mathematical data can 
require complex 
mathematical data.

• Archiving and preservation: 
snapshots in a machine 
readable format on Zenodo 
or GitHub to ensure 
longevity. 

• Reproducibility for results of 
computation: record 
software info (version), 
attach code. 

• Open problem: recognition 
beyond publications*

There are a few things dataset authors can do to improve the usability, and documenting the 
contents and structure is an important part of that. 


You might remember that one of the stated goals of MathBases is to help mathematicians 
compile new databases and improve existing ones. Because it has gained some visibility 
(which came as a little bit of a surprise to me), we are in a position to recommend good 
practices. What should we recommend?




Not the data model, but good enough for this talk

A generic database

Values 
• results of computations: bipartiteness, chromatic number, ... 

• curated entries: theorems, references, code, equations, ... 

property 1 property 2 property 3 ...

object 1

object 2

object 3

object 4

object 5 

...

objects can have properties

a list of objects

a value

For now, let's take a simple table as a model for datasets - it is going to be good enough.



Not the data model, but good enough for this talk

A generic database - aligning with concepts

Values 
• results of computations: bipartiteness, chromatic number, ... 

• curated entries: theorems, references, code, equations, ... 

property 1 property 2 property 3 ...

object 1

object 2

object 3

object 4

object 5 

...

usually concepts

could be 
concepts

could be  
a concept  
(i.e. theorem)

Ideally, all of these should be nicely annotated: properties, but also some of the objects and 
possibly some of the object-property values.



Few options, none great

• Write down all the definitions  
(a lot of work) 

• Link to Mathlib or similar 
(a moving target, not so 
friendly for such a use) 

• Link to Wikipedia or similar 

Note: for usability, anything is 
better than nothing.

How can we annotate the data?

Let's look at defining one of the properties.


Suppose we take a dataset containing graphs; one of the properties could be whether a graph 
is Hamiltonian.


Big databases usually have the contributors to do the work of writing down all the definitions.


For smaller projects, property definitions are usually not defined (except where there is 
potential for ambiguity) - they are expected to be known by the members of the community, 
the main users. Unfortunately, this makes the data less useful outside of the area of origin. 



Few options, none great

• Write down all the definitions  
(a lot of work) 

• Link to Mathlib or similar 
(a moving target, not so 
friendly for such a use) 

• Link to Wikipedia or similar 

Note: for usability, anything is 
better than nothing.

How can we annotate the data?

We could recommend linking to one of the formal mathematics libraries; not super readable, 
potentially too precise.


About two years ago I asked my office mate at the time to mark up definitions in the Agda 
Unimath library with references to other resources. It took repeated convincing that it is ok for 
these references to have subtle differences in the definition of the concept before the 
annotations took off. I suspect part of it was that linking to accessible resources made it 
easier for undergraduate students to join the formalization project. Linking to a formal library 
from a database goes in the other direction but might present a similar (or worse) problem.



Few options, none great

• Write down all the definitions  
(a lot of work) 

• Link to Mathlib or similar 
(a moving target, not so 
friendly for such a use) 

• Link to Wikipedia or similar 

Note: for usability, anything is 
better than nothing.

How can we annotate the data?



Lessons learned

• Wikipedia and Wikidata 
imperfect (not news). 

• Very hard to convince 
practitioners to link to 
concepts that are slightly 
different. 

• Hypothesis: alignments are 
primarily a social 
engineering (technology 
might help, but won't solve) 

An experiment: Mathswitch

~ 835 entries

An experiment grew out of this frustration after the Dagstuhl workshop two years ago.


- Ask libraries to link to *anything*; link in place, close to the concepts (for maintenance 
reasons).


- Collect links and organize them into a network to provide value.

- That alone seemed to be enough to talk friends into it, but not enough to convince Mathlib, 

for example.



Successor to Freek Wiedijk's 100 theorems

1000+ theorems

• 100 theorems (precursor): showcasing formalizations by keeping 
track of formalizations of the hundred greatest theorems (a fixed list) 

• Indexing formalizations of a much longer (changing) list of theorems

1000-plus.github.io

http://1000-plus.github.io


• maps and hypermaps 
(regular and chiral) 

• graphs 
(group actions transitive on vertices, 
edges, or arcs) 

• abstract polytopes 
(regular and chiral) 

• maniplexes.

An example: symmetric objects

3. Aligning objects

1. Regular map {6,3}4,0 on the torus (PSL27) 
2. Heawood graph (Koko90) 
3. Hasse diagram of the square pyramid (David Eppstein)

Context: finite (combinatorial), symmetic (~transitive automorphism group)


Regular map: a decomposition of a two-dimensional manifold (such as a sphere, torus, or real 
projective plane) into topological disks such that every flag (an incident vertex-edge-face 
triple) can be transformed into any other flag by a symmetry of the decomposition.


Abstract polytope: partially ordered set which captures the dyadic property of a traditional 
polytope without specifying purely geometric properties such as points and lines. (1) It has 
just one least face and one greatest face. (2) All flags contain the same number of faces. (3) It 
is strongly connected. (4) If the ranks of two faces a > b differ by 2, then there are exactly 2 
faces that lie strictly between a and b.

- Diamond condition: for i = 0, . . . , n − 1 there is exactly one flag that differs from a given flag 
in the i-face

- Rank: {−1, . . . , n}; 0, 1 and n − 1 are vertices, edges and facets

https://commons.wikimedia.org/wiki/User:PSL27
https://commons.wikimedia.org/wiki/User:Koko90
https://commons.wikimedia.org/wiki/User:David_Eppstein


• maps and hypermaps 
(regular and chiral) 

• graphs 
(group actions transitive on vertices, 
edges, or arcs) 

• abstract polytopes 
(regular and chiral) 

• maniplexes.

An example: symmetric objects

3. Aligning objects

1. Regular map {6,3}4,0 on the torus (PSL27) 
2. Heawood graph (Koko90) 
3. Hasse diagram of the square pyramid (David Eppstein)

Schläfli symbol: a notation of the form { p, q, r, ... } that defines regular polytopes and 
tessellations.

 

Examples:

{ p } - p-sided regular convex polygon

{ p, q } -  q regular p-sided polygon faces around each vertex (cube: { 4, 3 })

{ p, q, r } - r { p, q } regular polyhedral cells around each edge (tesseract: { 4, 3, 3 } has 3 
cubes around an edge) 
 
Top left: 16 faces, 32 vertices and 48 edges, with a symmetry group of order 192


https://commons.wikimedia.org/wiki/User:PSL27
https://commons.wikimedia.org/wiki/User:Koko90
https://commons.wikimedia.org/wiki/User:David_Eppstein


• maps and hypermaps 
(regular and chiral) 

• graphs 
(group actions transitive on vertices, 
edges, or arcs) 

• abstract polytopes 
(regular and chiral) 

• maniplexes.

An example: symmetric objects

3. Aligning objects

maps

abstract 
polytopes

maniplexes

Maps and abstract polytopes: group representation (Coxeter generators), Schläfli symbol; 


Chiral: rotational, but no reflectional symmetry


Goal: link objects in the intersection, but also record other relations, such as maps and their 
skeleton graphs.



A generalization of maps and polytopes

• Can be represented as 
edge-colored graphs 

• An i-colored edge represents 
moving to an adjacent flag 
by changing the i-face. 

•  - the transposition 
corresponding to swapping 
the vertices along i-edges 

• i-faces are cycles of 
alternating colors

si

Maniplexes

Diagram from Cunningham, Del Rio-Francos, Hubard,  
Toledo, Symmetry Type Graphs of Abstract Polytopes and 
Maniplexes

0-edge

1-edge

2-edge



Graph canonical labellings to the rescue

• Permutation representation 

• Coxeter generator relations  

• Checking isomorphism hard 

• Graphs: canonical labelling 
(label vertices so that 
checking isomorfism 
becomes checking equality) 

• Use maniplexes to relate 
objects

Representations

s0 := (4,5);;
s1 := (3,4);;
s2 := (2,3);;
s3 := (1,2)(6,7);;
poly := Group([s0,s1,s2,s3]);;

Regular 3-polytope with group of 
order 24   SD  Type [ 3, 3 ]
[ A.1^2, A.2^2, A.3^2, (A.1 * A.3)^2, 
  (A.2 * A.1)^3, (A.3 * A.2)^3 ]

SD = self dual



Questions?



No answers, just an example: Lean-HoG

Formalizing a property to 
verify the data aligns the 
formalization with a column  

• Source of examples for 
formalized mathematics 

• Increased trust in the data

5. Formalizing data

Curtesy of Steven Clontz

Is a list of examples complete and correct?

Is the connection between theory and code sound?

Are the computational results correct


In the LMFDB, they run redundant computations, integrity checks, and have found bugs in 
computer algebra systems.



Techniques from engineering and mathematics

Some standard options to increase the level of trust 

• Standard checks: format, type, consistency, uniqueness, ... 

• Testing: software is run on a collection of test cases, the results are 
compared to reference results known to be true. 

• Redundancy: several versions of software performing the same task 
are developed and executed independently, their results compared. 

• Correctness of code or data is established by formal proofs.



The database of interesting graphs

The House of Graphs

• ~32 000 graphs on up to 250 vertices,  

• ~50 properties, including computationally difficult ones, such as: 
genus, chromatic number, and Hamiltonicity.

average order ~52

mean order ~29

The combination of graph sizes and properties means that we can't just compute whichever 
way we want.


Even though we formalized only a few properties, it was harder than expected.



based on quantity and complexity of objects and properties

Design options

• Prove the properties of each example by hand. 

• Implement algorithm(s) in the proof assistant 
(in the extreme case, implement a computer algebra system in a proof assistant) 

• Encode as SAT, verify encoding to be correct, use a (trusted) solver, 
check the certificates provided by the solver. 

• Use external software to compute properties and their certificates, 
use the proof assistant to check correctness.

1. For few objects and properties, simple.

2. Few properties, many objects, efficiently computable: can be difficult.

3. We used a combination of the last two.



Instead of computing values, just check correctness

Certificates (a.k.a. witnesses)

• Standard technique in computer science 

• Check that 112909084933 is not a prime vs. 
132241 · 853813 = 112909084933. 

✓  Certificates explain why a property holds. 

✗   Some properties do not have a certificate.

This works more broadly than you (might) think! (Used the idea for computation of election 
results).


The proof assistant can check the correctness of the certificate. While the connection with the 
property "not prime" follows directly from the definition here, this is not the case in general; a 
further proof that the property follows from the certificate can be necessary.



Donald Knuth

“The Petersen graph is a remarkable 
configuration that serves as a counterexample 
to many optimistic predictions about what 
might be true for graphs in general.”

Let's look at a random example of a graph from the House of Graphs.




has a Hamiltonian path, is not Hamiltonian

The Petersen graph

A foreshadowing of things to come. 

Easy-ish: find a path in the graph that visits all vertices exactly once, 
Harder: prove that we can't find such a cycle in the graph.

The Petersen graph is also the smallest vertex-transitive graph that is not a Cayley graph.



A Lean 4 library for finite simple graphs incorporating the House of Graphs

Lean-HoG

• Import graphs with efficient representations into Lean, 

• together with values and certificates for:  
the number of connected components, bipartiteness, traceability. 

• A tactic to search the database and 

• a tactic to close a goal by finding an example. 

• Checking the number of connected components on (almost) all 
graphs takes ~16h.

Mathlib provides a basic, general-purpose formalization of simple graphs, but it was not 
suitable for our purposes. To address this, we implemented a small library for finite simple 
graphs, prioritizing efficiency over generality.


Early experiments showed that we could process a graph in time at most quadratic in the 
number of edges, and wherever possible, sub-quadratic in the number of vertices. Working 
naively with lists of vertices and edges — or with adjacency matrices — led almost 
immediately to quadratic (or worse) time complexity.


Some invariants, such as the number of edges, can be computed efficiently by the Lean 
kernel, provided an efficient graph representation. For other invariants — for example, testing 
bipartiteness via 2-coloring or detecting odd cycles — Lean can efficiently verify a certificate 
when supplied.


For the invariants (traceability), with certificates that only work in one direction, one strategy 
would be to complement them with heuristics wherever they work. For instance, detecting a 
disconnected graph is an easy way to rule out Hamiltonicity. Only when these simpler 
methods fail would we resort to SAT solving. However, we chose to take a more principled 
approach by using SAT for both directions.



Warning, implementation 
details ahead.



Mathlib: graphs represented with a symmetric, irreflexive adjacency relation

Getting graphs into Lean

• Given a coloring , check that adjacent vertices have different colors:  
,  

time complexity , only  when given a set of edges. 

• Check whether a graph is regular: 
 

time complexity , only  when given a neighborhood map. 

c
∀ i j : Fin n . Adj i j → (ci ≠ cj)

𝒪(n2) 𝒪( |E | )

∃ k : ℕ . ∀i : Fin n . |{j : Fin n; Adj i j} | = k
𝒪(n2) 𝒪(n)



A Lean 4 library for finite simple graphs incorporating the House of Graphs

Lean-HoG graph representations

All properties require efficient  

• membership checking, and 

• checking that something holds for every element of a set, i.e. 
vertices, edges. 

Lean-HoG: 

• RBSet and RBMap for all sets and maps,  

• graphs represented via sets of edges (and an auxiliary neighborhood 
map, checked to be equivalent).

Certificates:

- could use regular certificates (no SAT) for the simple direction; use heuristics whenever they 

work for the other direction (such as a disconnected graph for Hamiltonicity), only resort to 
SAT when all else fails;


-  we took the more principled approach with SAT.



Connected components



Certificate



Certificate



Load the certificate



Hamiltonian Paths

NP-hard, in general no easy certificate for non-existence.
Use a SAT solver.

 



Hamiltonian Paths

NP-hard, in general no easy certificate for non-existence.
Use a SAT solver.

 



It probably won't be what you expected

Take-aways for incorporating a database into a proof assistant

• It depends on the database. 

• Lean may be a sensible proof assistant to start with. If you do choose 
Lean, a lot depends on Mathlib. 

• Checking a database may force you to consider efficiency and may 
make you feel like you are doing CS 50 years ago. 

• Alternative to our approach: formal verification of algorithms. 

• We implore database designers to consider certificates whenever 
possible.

 We found it particularly advantageous to minimize the amount of computation performed 
directly by Lean, especially in situations involving meta-programming, where Lean 
metaprograms construct proofs for each value.


It would be possible to implement most of the properties of graphs in HoG. In some cases, 
however, we did not see a clear way out. For instance, computing the maximum or minimum 
eigenvalues of the adjacency matrix would require not only a standard format for algebraic 
numbers and a trusted, efficient computation engine for them, but also further considerations 
if we wanted to reason about extremality.



Recap of what we have been up to

• MathBases 
Adam Towsley, Ben Spitz, 
David Roe, David Lowry-Duda, 
Benjamin Hutz, Edgar Costa, 
KB 

• 1000+ theorems 
Freek Wiedijk, Floris van Doorn, 
KB; editors for each system 

• Lean-HoG 
Jure Taslak, Gauvain Devillez, 
KB, Andrej Bauer

Thank you!

Slides (hopefully) and references at katja.not.si, as promised
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